

Degraders revolution in oncology

Roberta Ibba, PhD

Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee
Dundee, Scotland, UK

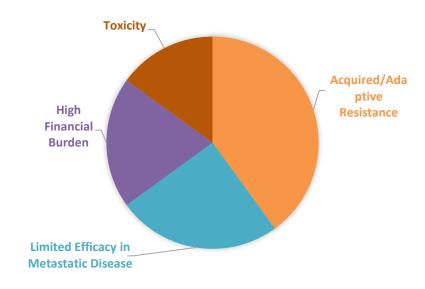
CONGRESSO NAZIONALE AIEOP

ROMA, 22-24 Settembre 2025 CENTRO CONGRESSI

UNIVERSITÀ CATTOLICA
DEL SACRO CUORE

Disclosures of Roberta Ibba

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other



The Need for New Cancer Therapies

METHODS OF CANCER THERAPY

LOCAL SYSTEMIC Targeted Hormone Chemotherapy **Surgery** therapy therapy Antibody-drug conjugated **Radiation Immunotherapy Cell therapy**

CHALLENGES IN CURRENT CANCER THERAPIES

The Need for New Cancer Therapies

The Challenge of "Undruggable" Targets

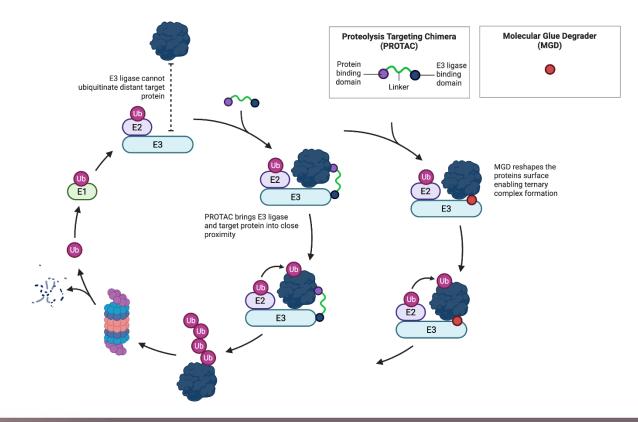
Many cancer-driving proteins cannot be targeted by traditional small-molecule inhibitors.

These are called "undruggable" targets.

Reasons: lack of suitable binding pockets, IDPs, high similarity to essential proteins, or non-enzymatic/scaffolding functions.

Examples: KRAS, transcription factors (e.g., BCL6, STAT3), chromatin re-modellers (e.g., SMARCA2, BRD9).

TPD - **Targeted protein degradation**, achieved through **small molecule degraders**, is an emerging strategy in oncology and other therapeutic fields to address proteins that are difficult to target with conventional drugs.

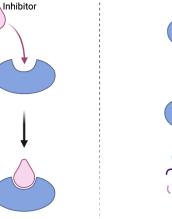

Targeted Protein Degradation

PROTACs and **Molecular Glue Degraders** (MGDs) enable the **E3 ligase** to recognize and ubiquitinate target proteins.

PROTACs physically bring the E3 ligase and the target protein in close proximity, allowing the formation of a ternary complex.

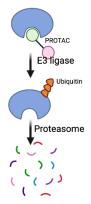
Molecular glue degraders (MGDs) reshape the protein surface to facilitate the ternary complex formation between E3 ligase and the target.

This process leads to **ubiquitination** and subsequent **proteasomal degradation** of the disease-causing protein.



Targeted Protein Degradation

Inhibition


Blocks the activity of a target protein

Inhibited

Degrader

Drives the elimination of the target protein from the cell

Degraded

Feature	Traditional Inhibitors	Targeted Degraders (PROTACs)		
Mechanism of Action	Blocks one function of the protein	Removes the entire protein*		
Duration of Effect	Temporary, requires constant presence	Durable, catalytic, long-lasting		
Dose Requirement	Often high doses	Effective at low/substoichiometric doses		
Selectivity	Limited, risk of off-target effects	Can achieve selective degradation		
Resistance Risk	High (mutations in binding site)	Lower (can bypass resistance mutations)		
Undruggable Targets	Not accessible	Can be degraded		

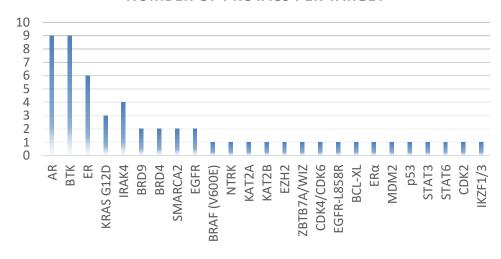
* Scaffolding activity also depleted

PROTACs in Clinical Trials

Over 40 PROTAC molecules have entered clinical trials in recent years, reflecting rapid growth in this innovative therapeutic field.

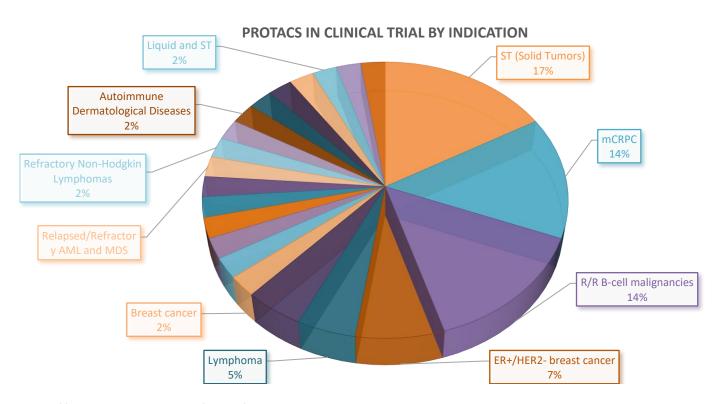
These compounds target a wide range of oncogenic proteins, including those previously considered "undruggable," across multiple cancer indications.

NUMBER OF PROTACS IN CLINICAL TRIALS



PROTACs in Clinical Trials

Over 40 PROTAC molecules have entered clinical trials in recent years, reflecting rapid growth in this innovative therapeutic field.


These compounds target a wide range of oncogenic proteins, including those previously considered "undruggable," across multiple cancer indications.

NUMBER OF PROTACS PER TARGET

PROTACs in Clinical Trials


Case Study 1 – BTK Degraders

Target protein: Bruton's Tyrosine Kinase - BTK

Given the critical **role** of BTK in **cancer**, its **scaffolding function** in cellular signalling, and the rise of **resistance mutations** to current therapies, BTK has emerged as an **excellent candidate for PROTAC-based drug discovery**.

Inhibitors (covalent and reversible) are approved, but mutations raised.

Currently, six BTK degraders are being evaluated in clinical trials for the treatment of B cell malignancies.

Case Study 1 – BTK Degraders

Drug name: NX-2127 and **NX-5948**

Target protein: BTK

Cancer type: Resistant B Cell Malignancies

Clinical phase: Phase I (NX-2127), Phase I (NX-5948)

Key results or advantage

NX-2127

Achieves potent degradation of **both wild-type and mutant BTK** (including resistance mutations like C481S), leading to significant reduction of BTK levels in patients regardless of mutation status. Also acts as a **dual degrader** (BTK and Ikaros proteins), showing clinical activity in heavily pretreated B cell malignancies.

VX-5948

Selectively degrades BTK (wild-type and mutant), demonstrates strong tumor growth inhibition, and uniquely penetrates the central nervous system, enabling **potential treatment of CNS lymphomas**.

Case Study 2 – Bcl-xL Degraders Innovative Approaches for Lymphomas

Target protein: B Cell Lymphoma—Extra Large — Bcl-xL

Bcl-xL is an anti-apoptotic protein overexpressed in T cell lymphomas, contributing to therapy resistance.

Traditional inhibitors (e.g., navitoclax) failed due to dose-limiting thrombocytopenia.

Drugs name: DT2216, a VHL-based PROTAC, selectively degrades Bcl-xL in tumour cells while sparing platelets (which express low VHL).

Clinical phase: Currently in Phase I trials for relapsed/refractory malignancies; granted orphan drug and fast track designations.

Cancer type: T cell lymphomas

Future of TPD for Paediatric cancers

KOODAC

Funded in 2024 by Cancer Grand Challenges.

Focus: Developing targeted protein degraders for five key oncoproteins in high-risk paediatric solid tumours (e.g., MYCN, ALK, EWSR1::FLI1, PAX3::FOXO1, DNAJB1::PRKACA).

Goal: Deliver new oral therapies for neuroblastoma, fibrolamellar hepatocellular carcinoma, medulloblastoma, Ewing sarcoma, and rhabdomyosarcoma.

PROTECT

Funded in 2024 by Cancer Grand Challenges.

Focus: Pioneering new approaches—including targeted protein degradation and immunotherapy, CAR-T—for childhood solid tumours.

Goal: Transform the therapy landscape for paediatric cancers by developing Innovative, globally accessible treatments.

Acknowledgments

innovate collaborate inspire

Prof. Alessio Ciulli Dr. Suzanne O'Connor All the colleagues at the CeTPD

