

AIEOP in LAB Bologna, 29 maggio 2018

Messa a punto di modelli cellulari umani per lo studio della malattia di Gaucher

Daria Messelodi

Gaucher Disease

- the most common lysosomal storage disorder
 - genetic autosomal recessive disease

Cause: deficiency of the enzyme glucocerebrosidase, required for the degradation of glycosphingolipids, due to mutations in the GBA1 gene

GBA1: chr 1q21-22, 11 exons encoding the glucocerebrosidase protein
Nearly 300 mutations (N370S, L444P, IVS2+1, 84GG → the most frequent)

https://ghr.nlm.nih.gov/gene/GBA

Gaucher Disease Phenotypic manifestations

Gaucher disease classification, depending on neurologic symptoms:

- type 1: non neuronopathic
- type 2: acute neuronopathic
- type 3: chronic neuronopathic

However, GD syntomatology represents a continuum

Gaucher Disease - a phenotypic continuum Type 2 Type 3 Type 1 Neurologic manifestations --> Asymptomatic Hydrops Visceral disease fetalis 2º neurologic involvement icthyosis Parkinsonian Progressive manifestations neurologic degeneration Hydrocephalus, Myoclonic cardiac valve epilepsy calcifications Eye movement disorder https://www.physio-pedia.com/Gaucher Disease

Gaucher Disease Search for new players

GD is a monogenic disease but there is a wide spectrum of phenotypic manifestations

Other genes are involved?

Search for new:

- modifier genes
- interacting pathways

Necroptosis pathway

Necroptosis is a form of caspase independent regulated cell death

It is induced by inflammation

Kinase-regulated process with 3 key factors

- RIP1/RIPK1
- RIP3/RIPK3
- MLKL

http://www.kidney-international.org/article/S0085-2538(15)55392-1/fulltext

Necroptosis

Preliminary data on cell lines

MOLM-13 and U-87 MG treated with CBE

Increase in the RIPK1 gene expression after 3 and 6 days treatment with CBE (250µM)

iPSC model

Induced pluripotent stem cell (iPSC)

Healthy donor

- CRISPR-Cas9 to introduce GBA1 mutations;
- comparison with the wild type control.

Patients

- reprogramming of peripheral blood mononuclear cells (PBMCs);
- correction of the mutation.

iPSC Gene editing

Gene editing → introduction of the proper GBA1 mutation into the cell genome

CRISPR-Cas9 system to introduce the GBA1 mutation N370S: A→G (ex 10)

Strategy:

- ssDNA donor including the mutation sequence
- Plasmid encoding for a gene specific RNA guide and Cas9 protein

Screening of:

- 38 iPSC colonies trasfected with guide 1
- 98 iPSC colonies transfected with guide 2

https://www.addgene.org/62988/

iPSC GD patient

Reprogramming of mononuclear pheriperal blood cells of a GD patient with N370S/L444P mutations to iPSC

Strategy

Sendai vectors: KOS, c-myc, Klf4

- ✓ Obtainment of iPSC
- √ Validation of the model

Hematopoietic differentiation → 12 days protocol to obtain hematopoietic progenitor cells

Evaluation of CD34, CD43 and CD45 positivity in flow cytometry

Decrease of the expression of pluripotency marker genes after hematopoietic differentiation

iPSC-derived hematopoietic precursors

CNTR and GD cells N=375000 in **liquid colture** with StemPro34 and myeloid cytokines CNTR and GD cells N=25000 in **methylcellulose** for Colony-Forming Unit assay

Increase of the expression of GBA after differentiation towards the myeloid fate

Liquid colture

Days after replating

Methycellulose colture

Next steps...

- Differentiation of iPSCs towards the monocytic/macrophagic fate

 → cells mainly involved in GD
- Analysis of the necroptosis pathway effectors on iPSC model
- Development of a new gene editing strategy to correct the mutation

Gaucher Disease Study group

Laboratory of Pediatric Oncology and Hematology

Prof. Andrea Pession

Dott.ssa Annalisa Astolfi

Dott. Salvatore Nicola Bertuccio

Dott.ssa Jessica Bandini

Dott. Salvatore Serravalle

Cancer Revolution Lab

Dott.ssa Silvia Strocchi

Dott.ssa Daniela Grifoni

Thank you for your attention!